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The Navier-Stokes, Burnett and truncated Burnett systems of equations for a polyatomic gas with a slight exchange of translational 
and internal energies of the molecules are presented, The establishment method is used to calculate the structure of a shock 
wave in nitrogen. The results of calculations using these systems of equations are compared with the results of the method of 
direct statistical modelling. The effect of bulk viscosity and the accuracy of the Eucken approximation in the theory of heat 
conduction are analysed. The structure of the shock wave in a binary mixture of monatomic gases is calculated using the 
Navier-Stokes equations and the truncated Buruett equations by numerical upstream integration of a system of ordinary differential 
equations. The role of thermal diffusion is considered. © 2005 Elsevier Ltd. All rights reserved. 

Burnett's equations have been used in many investigations, which are completely or partially reviewed 
in [1-3], etc. An important stimulus has been the problem of the structure of a strong shock wave, when 
these equations considerably refine the Navier-Stokes equations. However, the well-known "defects" 
of the Burnett equations arise, namely, indeterminacy with the boundary conditions (the order of the 
Burnett system is higher than the order of the Navier-Stokes system), short-wave instability, the presence 
of "false solutions" and the awkwardness of the equations [1, 2]. To eliminate these, it has been proposed, 
in particular, to solve the complete system of Burnett equations by the method of successive approxi- 
mations with respect to a simpler system of the truncated Burnett equations. Investigations have been 
made of the applicability of the method for a simple gas [2, 4, 5] and for a binary mixture of monatomic 
gases [3, 6]. It has been shown that the truncated Burnett equations are effective: with a fairly high 
accuracy, the order of the system is equal to the order of the Navier-Stokes system of equations and 
there is no short-wave instability. 

Below we extend the consideration of this effectiveness. We use results obtained earlier in [7] to 
formulate Burnett's models for a molecular gas. 

1. T H E  E Q U A T I O N S  F O R  A P O L Y A T O M I C  G A S  

T h e  sys tem o f  B u r n e t t  e q u a t i o n s  has  t he  f o r m  

Op OPus 
Ot + (9u~)'~ = O, ~----~ + (9u~u~ + p~a~ + ~ )  ~ = O, p = p R T  

Ot~, 2 2 pcv + us + p + 2 pcv  + u~x~  + qa.,~ = 0 

(1.1) 
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Here 

B (l) A B 
'l;c~[~ = ( H  (1) + H A + H )Sa~ + ~a~  "1- 7~ot~ + /l;ot~' 

* 1 + 2 0(') 
cv = ~kCv; ('),c~ = "~ra 

A B 
qc~ = q(a~) + qa + qc~ 

(1.2) 

p is the mass density, u is the gas velocity, R = k/m,  k is Boltzmann's constant, m is the mass of the molecule, 
c~ is the specific heat capacity at constant volume, due to the internal degrees of freedom of the molecules, 
the components of the radius vector r are introduced by the subscripts ¢z, ~ and 7 = 1, 2, 3, the rule of 
summation over repeated subscripts is used, and ~ is the unit tensor. The complete stress tensor 

P = p S + x  = ( p + F I ) ~ + n  

where the quantity H is due to the internal degrees of freedom of the molecules, ~ is the non-divergent 
stress tensor and q is the heat flux vector. 

Omitting the quantities H a, n ~ ,  q~ in relations (1.1) and (1.2), we obtain the system of truncated 
Burnett equations retaining only ~0), n(all, q~), the system of Navier-Stokes equations. 

In the Navier-Stokes approximation 

Fl (') = - q V - u ,  n(al~ =-2rleal~, ea[~= (ua,[3), q(a 1) =-~.T.a,  9~= Xt+~'u (1.3) 

Here 

1 1 
V. u = uc~ ,c~, (Aa[~) = ~(Aa[~ + A[~a)- ~AvvSal ~ (1.4) 

g, rl and ~ are the bulk and dynamic viscosity coefficients and the thermal conductivity, and the quantities 
and Lu are due to the translational and internal energies of the molecules respectively. 
In the truncated equations, in addition to the terms (1.3), the following Burnett terms are taken into 

account 

H A = `01ectl3el3ct + `04(V • n )  2 _ `05u13, aUoq 13 

A = ~ lecq3V.  u + + ~3(eaTeyi3) /tcq 3 - ~2 (2u7, c~eT[ 3 uy, fjua, y) 

qA 272V 1.-LTav . + . + + 
L3c* ' 

(1.5) 

Finally, the terms of the system of Burnett equations 

n" : `02v2r +`03(vr)2- %( p,~] +,06_ 
\ 9 2,~ p p'aT'~ 

3c v 

The Burnett transfer coefficients are given by the following approximate formulae [7] 

` 0 ,  - pn~,2 0̀2 = ~ ( x , - ~ ) ,  0̀3 = pLdr- 5 ~ t c - ~ ) -  x~ST((A%) > c ~  3 

= 7[2- -3--~0.L2 rg+5(~(ar(g(~)-2)+ 

(1.6) 

(1.7) 
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% = ( 1 + o ) ,  m 6 = O; o -  
P 2cv 

4q2(7  ~v* 3_g), 1 q2 4r I 4r id ) .  t 
~' = 3 p \ 2  - 0rrl + 2rlJ ~2 = ~ 3  = p ,  ~4 ---- 5 7 ~ " t  ' ~5 = SpriT' ~6 = 0 (1.8) 

= 4m 2 5 3 d )'u 2 2 3 

g o  2 2 5 "} 
+ + 

2m f ~ ) gG)%), Y3 - 5kp 72 = -~-~p~a7 + 5 2 4mrl~, (1.9) 

7,2 5 m 725 2)} 
~t 4 .= "~p ~"tOT (T  T]) "t- ~ILt) + ~'- '~I~t  -I- "~(Y~7 ) 

4q~,t m ~k 
3'5 = 5kn' 3'10 = -~-'T712, 712 = (~t-13)~o) 

In formulae (1.5) and (1.6) we have omitted [7] the coefficients m*, {* and 7% the coefficients g, 11, 
L, Lt and )~ defined by expressions (1.3) depend on the temperature, the operation (...)c was postulated 
earlier in [8], and the operator 3rN is given by the formula 

OrN = dlnN/dlnT 

(for example 0:r(g(y) = dln(go)/dlnT). 
We will further consider a diatomic gas with excited rotational degrees of freedom of the molecules. 
The bulk viscosity coefficient is given by the formula [9] 

1 3 -2 
g =  2~kcvrlZ@2k + cv ) (1.10) 

Here Z is the ratio of the relaxation times of the rotational and translational degrees of freedom. To 
estimate the value of Z we will use the approximate Parker formula 

I (4 ) t  -' (11 ) Z = Z= 1 + T 0 1 / 2 +  +2  0 , 0 - T-  

For nitrogen T. = 91.5 K. The results of calculations of the profiles of the gas-dynamic variables in the 
shock wave for values of Z= = 15-22, obtained using the mathematical models in Section 2, differ only 
slightly (they merge in the scales shown in Fig. 1), and hence we take Z= = 18.2. 

We will write the thermal conductivity in the form 

£ = ~ R r l A ,  A = ) ~ * + ~ *  (1.12) 

where )~ and )~ are due to the translational and rotational degrees of freedom respectively. In practice 
one usually confines oneself to the modified Eucken approximation [9, 10], when 

4 con 4 9°~ (1.13) )v* = 1, )~* = i-~TI3,= 1.328, 13,- rl 
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Here we have taken into account the equality cv = k; ~ is the coefficient of self-diffusion of the gas, 
ignoring the rotational degrees of freedom. The quantity 13t depends only slightly on the intermolecular 
potentials, and hence its average value [10], given in (1.13), is used. At low temperatures the Mason- 
Monchick approximation [9] is used 

)~* = 1 A , ~ 99o  
- 5 '  ~t, = ( I + A ) ,  ~ v -  11 -~ t (P(T)  

5_2 VFl+ 2 (  5 )]-l 3k 
A = r tZ L + , o = 2c-  

(1.14) 

where ~ is the coefficient of self-diffusion of the gas taking into account the rotational degrees of free- 
dom. The ratio ~ v / ~  will be estimated using the approximate Sandler formula [9] 

~ v l ~  = qo(T) = 1 + 0.27Z -1 - 0.44Z -2-  0.90Z -3 (1.15) 

In what follows we will assume [7] 

c v = k, o = 3/2,  ((AEco)3)c = 2 

The dynamic viscosity coefficient 11 N T s, S = 0.72. 

(1.16) 

2. RESULTS OF C A L C U L A T I O N S  

To solve the problem of the structure of a shock wave using the system of equations described above, 
we used the numerical establishment method [6]. The method of direct statistical modelling [11] has 
also been used, generalized to take into account the rotational degrees of freedom using the VRS-model 
[11, 12] with representation (1.11) for the rotational relaxation time. The results obtained earlier in 
[12] agree with experimental data on the density profile in a shock wave in nitrogen when M = 10 and 
can serve as standard ones in qualitative considerations. The calculations were carried out for nitrogen 
at the free stream temperature T(--~) = 100 K and different Mach numbers M, using formulae 
(1.10)-(1.12) and (1.14)-(1.16). The reduced temperature, the reduced mass density and the reduce 
streamwise coordinate are as follows: 

T* = T-T(- , ,o)  P* = p_p(_oo) x* = x. I - 1 
T(+~) - T ( -~ ) '  p(+~) - p ( - ~ ) '  l' 4~gd2n 

where l is the value of the mean free path upstream of the wave (x = --~), and the diameter of the 
"pseudosphere" d of the VHS-model is expressed in terms of its parameters [11] (in formula (2.1) [6] 
we must put m i + mj instead o f m  1 + m2). 

As previously [2-6], the Burnett models considerably improve the Navier-Stokes model (Fig. 1, 
M = 11, the results obtained using the truncated Burnett equations are represented by the continuous 
curves, the results obtained using the Navier-Stokes equations are shown by the dashed curves, the 
results obtained using Burnett's equations are shown by the dash-dot curves and the results obtained 
using the direct statistical modelling method are represented by the small circles). The agreement 
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between the results of a calculation using Burnett's models with the results obtained by direct statistical 
modelling, are approximately the same as in the case of a monatomic gas, although it was assumed that 
only slight exchanges occur between the translational and internal energies of the molecules, for which 
the effect of the bulk viscosity coefficient is substantiated [9, 10]. Previously in [13] a more general 
relaxation approach was used within the framework of the Burnett equations. In order to improve the 
accuracy of the theory, a semiempirical equation was developed for the rotational temperature. 
Expressions which hold in the case of a monatomic gas were employed for the transfer properties. 

The approach developed here enables us to estimate the effect of the bulk viscosity coefficient on 
the profile of the gas-dynamic variables, which is of interest in supersonic aerodynamics: to calculate 
the flow around bodies the system of Navier-Stokes equations is widely used, but the bulk viscosity 
coefficient is ignored. When g = 0 the system of equations (1.1)-(1.9) is simplified considerably, since 
the quantities H, 710 and 712, and terms of the expressions for the coefficients 41 and 71, proportional 
to the coefficient g, vanish. 

We will introduce the ratios (for given x*) of the values of the temperature and density of nitrogen, 
calculated for g = 0 and g ~ 0, 

A r = T(g = 0) /T(g~0) ,  Ap = 9(g = 0)/9(g ~0)  

The results of calculations using the truncated Burnett equations are shown in Fig. 2 for M = 11 
(the continuous curves), and M -- 5 (the dashed curves). The deviations of the values of A T and A 0 
from unity for the Navier-Stokes equations (but for other x*) are close to them. 

The bulk viscosity has a considerable effect on the profiles of the gas-dynamic variables just upstream 
of the shock wave. The effect increases as M increases. 

We emphasize that, in all the cases considered in this paper, the origin (x* = 0) corresponds to the 
point where 9* = 1/2. 

For gas dynamics the problem of the accuracy of the Eucken approximation (1.12) is fundamental, 
i.e. the contribution to the solution of the problem of terms of the expressions for the coefficients (1.14), 
proportional to the quantity A - Z -1. The value of max I T(A = O)/T(A ¢ 0) - 11 for M = 5 and 
M = 11 is equal to 0.11 and 0.31 in the case of the truncated Burnett equations (x* = -5.12 and 
x* = -7.94) and 0.03 and 0.12 in the case of the Navier-Stokes equations (x* = -2.12 andx* -- -3.38). 
Hence, the contribution is greater in the case of the truncated Burnett equations, since the quantities 
Lt and 7% occur in formulae (1.7) and (1.9) separately, and in certain cases quadratically (see (1.9)). In 
the case of the Navier-Stokes equations these quantities occur in the form of a sum (1.12), where the 
terms of formula (1.14), proportional to the coefficients A, have opposite signs and partially "cancel" 
one another. However, the contribution also considered here is not negligibly small in the 
neighbourhood of the upstream side of the shock wave. 

3. A BINARY M I X T U R E  OF M O N A T O M I C  GASES 

The problem of the structure of the shock wave in a simple gas within the framework of the Navier-Stokes 
equations is solved by numerical upstream integration of the ordinary differential equation [14]. The 
same procedure can be used in the case of the truncated Burnett equations [2]. However, the nature 
of the singular points of the complete system of Burnett equations when M > 1.9 does not allow it to 
be used [15], and establishment methods are employed [1, 3, 6, 13]. 
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For a binary mixture, within the framework of the Navier-Stokes equations, the problem can be solved 
without analysing the phase pattern [16]. We will consider the one-dimensional time-independent 
truncated Burnett equations, using the relations obtained earlier in [3, 6]. After lengthy calculations 
we obtain a system of two autonomous ordinary differential equations 

df ,n  K m ( f l ,  f2 ,  03) 

do) L ( f  l, f 2, 0)) ' 
m = 1, 2 (3.1) 

where fl and 03 are the dimensionless temperature and dimensionless mean mass velocity, andf2 is the 
molar fraction of one of these components. In the case of a simple gas, we have a single equation 
(f2 = 0), and the analysis is carried out analytically both within the framework of the Navier-Stokes 
equations [14] and within the framework of the truncated Burnett equations [2]. The curves of 
Kl( f2 ,  03) = 0 and L ( f l ,  03) = 0 intersect at the singular points 0)1 and (o2, corresponding to the value 
of the dimensionless coordinate x* = _+ oo. It has been proved that only one integral curve exists, which 
emerges from the point 031 and enters at the point 032 (the remaining integral curves leave the region 
S, bounded by the curves K1 = 0 and L = 0 [14]). 

In the case of a binary mixture we have a system of two equations (3.1), the quantities Km and L are 
given by very lengthy expressions, and hence it is only possible to carry out a computer analysis. In the 
specific cases considered here, Eq. (3.1) has two singular points: 031 and c02. The roots of the cubic 
dispersion equation ~'r (r = 1, 2, 3) are real, X~ > 0 at the point 032 and )vl, 2 > 0, )23 < 0 at the point 031. 
Hence, the singular points are three-dimensional analogues of a saddle (031) and of an unstable 
node (032)" 

The negative root corresponds to the required integral curve. A computer analysis of the behaviour 
of the integral curves in the three-dimensional region, similar to the region S in the case of a simple 
gas, shows that a unique integral curve exists, connecting the points 031 and oh. Numerical upstream 
integration of system (3.1) gives the same conclusion. The formulation of the boundary condition at 
the point 031 is analogous to that given earlier in [14, 16]. 

Our calculations confirmed the results obtained in [3, 6]. It was shown that barodiffusion has only a 
small effect on the profiles of the gas-dynamic variables (within the framework of the Navier-Stokes 
equations). We carried out a systematic analysis of the effect of thermal diffusion. In the case of Maxwell 
molecules we have 

6C* 2 - 5  = 0 (3.2) 

where C~2 is the ratio of the reduced O-integrals [10]. We will call the zero thermal diffusion case 
approximate when we can formally assume that equality (3.2) is satisfied for any intermolecular 
potentials. Then, in the notation used previously [7, Section 2], k:r, gbr, A and 87/are equal to zero, in 
which case )v' = )v. The Burnett transfer properties are cardinally simplified: in the notation used 
previously [3] we will have 

2 2 vqi~ i h ~'~i~"i I- -5/20(T7/2qi)q v 4k 
* ,  = Z r j ,  * ,  = Z e, = -  

m i i = 1  i = 1  

instead of the complicated expressions given previously [3, formulae (1.8)]. 
The effect of thermal diffusion on the profile, i.e. the difference between the data when k:r * 0 and 

in the approximation of zero thermal diffusion (3.2), is shown in Fig. 3. The data were obtained using 
the Navier-Stokes equations for a mixture of molecules in the form of elastic spheres, the diameters 
of the molecules being the same, and M = 11. We have used the following notation [3] 

xi* = x i ( x* )  - x i ( - ° ° )  ne Pi 
xi(-oo ) ' xi =-- 'n ci = -p' n = nl + n 2, p = p l + p 2  

where hi, Pi = mini and m i are the number density, mass density and the mass of a particle of the ith 
component of the mixture, i = 1, 2. The continuous curves were obtained taking thermal diffusion into 
account, while the dashed curves were obtained ignoring thermal diffusion (i.e. in the approximation 
(3.2)); the upper two pairs of curves are given for xff--oo) = 1/2, and the lower pair is for cff--~) = 1/2. 
The effect of thermal diffusion in the case when cff-oo) = 1//2 is much less than in the case when 
Xl(---oo ) ~- 1/2. 
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In Fig. 4 we show the values of the ratios of the temperatures and the mass densities in an argon- 
helium mixture (mf fml  = 10) 

= 
T(k  r = O) p (k r  = O) 

T(k  r,/: 0 ) '  ~g - p(k  r,g O) 

for the case whenxl(--oo) = 1/2, obtained using the truncated Burnett equations (the continuous curves) 
and the Navier-Stokes equations for kr  = 0 (i.e. in approximation (3.2)) and for kr  ~ 0. 

The effect of thermal diffusion on the temperature profile is much greater than on the density profile. 
Approximately the same deviations of 0 and ~ from unity occur in the case of molecules in the form 
of elastic spheres with diameter ratios dz/dl -- 1 and 2. The ratio rn2/rnl --- 1 is the main factor in the 
influence of thermal diffusion on the structure of the shock wave. This influence decreases together 
with m f f m  1. For example, for an argon-neon mixture (mf fml  ~ 2) the value of max I 0 - 1] is equal to 
0.04 for the truncated Burnett equations and 0.17 for the Navier-Stokes equations. However, it is 
important to bear in mind that when m2/rn 1 > 10 it is necessary, strictly speaking, to use the two-fluid 
description, since the differences in the values of the temperatures and the velocities of the components 
of the mixture will be more than double [3]. 
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